UPDATING PROPERTIES OF DIRECTED ACYCLIC GRAPHS ON A

PARALLEL RANDOM ACCES.. (U) HﬂRVLﬁND UNIV COLLEGE PM!K
CENTER FOR AUTOMATION RESEARCH S PANAGI ET ﬁL
UNCLASSIFIED CAR-TR-148 AFOSR-TR-85-1124

, RD-R162 934

Ty - SR ‘N - MERSE. Lo | AR T S
T . RPN AP PIIRI

e

R

D R e Y T N R W R

R et R —

2

e B O e e

L

x

wl

e,

U]

M

-

ey

RIS

ERHE
HHEEE)

H HEFERR

1-0
1§

= Tl

i
I

NATIONAL BUREAU OF STANDARDS
MICROCOPY RESOLUTION TEST GHART

--\

AD-A162 954

(R £ PR

CAR-TR-148 September 1985

CS-TR-1551
Updating Properties of Directed Acyclic Graphs
on a Parallel Random Access Machine *

Shaunak Pawagi
I. V. Ramakrishnan !

Department of Computer Science G..
University of Maryland xl.
College Park, MD 20742 «}{)
T
- - e - S At - R e S 2 ‘m;

S T . e

OTC FILE COPY

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYILAND
20742

Aps'h(;'i'f =
Yistagy,
‘l‘

DEC 31 9657

s
S,

CAR-TR-148
CS-TR-1551

September 1985

Updating Properties of Directed Acyclic Graphs
on a Parallel Random Access Machine *

Shaunak Pawagi
I. V. Ramakrishnan !

Department of Computer Science
University of Maryland
College Park, MD 20742

©°" ABSTRACT
) Fast parallel algorithms are presented for updating the transitive closure, the domi-
nator tree, and a topological oidering of a directed acyclic graph (DAG) when an incre-
mental change has been made to it. The kinds of changes that are considered here in-
clude insertion of a vertex or ins¢rtion and deletion of an edge. The machine model used
is a parallel random access machihe which allows simultaneous reads but prohibits simul-
taneous writes into the same memory location. The algorithms described in this paper
require O(log n) time and use O(n”) processors. These algorithms are efficient when com-
pared to previously known O(]og\%time algorithms for initial computation of the above
mentioned properties of DAGs. -/¥¢ ‘also describe a new algorithm for initial computation
of the dominator tree op{%@\, r algorithm improves the processor complexity of a
previously known algorithm”[14] y| a factor of n, but does not aflect the time complexi-
ty, which remains O(IOg’n),.‘ 7

——eere Sa N

py
Chaor ey - gwea

N

r

onLor
el

496 20-83-C - 00§ 2

™ The support of the first author by the Air Force Office of Scientific Research under Contract F-49620-85-K-0009, and
of the second author by the Office of Naval Research under Contract N00O14-84-K-0530, and by the National Science
Foundation under grant ECS-84-04399, is grateflully acknowledged.

tPresent, address: Dept. of Computer Science, SUNY at Stony Brook, Stony Brook, NY 11794.

'y

_ v
CADNOMENE

\g

v

*

L

v
&

®

*

--v

.‘ ') "'

'y % ",i
,'/4‘.v.fv

)

-
e
»
’
»

v

LR,

Sl og b RE,

¢« s 2 A

PR

E i)

'y

PN
v e e

¢ v & &

v,

.

LS

e
o

A
e

o'
-
*

Y R
W mXakawy

o

R -al e s T 8 S NADS A NE O SN M e ot A Ml B Sy 2 Koy S A R T S Sl s i 4 Vi B g 2 v -2 >, e

1. Introduction

Incremental graph algorithms are concerned with recomputing properties of a graph
after a minor modification has been made to the graph. Such recomputations are also
referred to as ‘‘updating” graph properties. Sequential incremental algorithms for
recomputing minimum spanning trees [17), connected components [5], transitive closure
[9], and shortest paths (6] have appeared in the past. The kinds of minor changes that
are considered in incremental computations are as follows. First, a vertex may be added
along with the edges incident on it. Second, an individual edge joining two vertices may
be deleted or added. If edges have weights associated with them then an increase or
decrease in the weight of an individual edge is a minor change. For such minor
modifications it should be possible to design eflicient algorithms for recomputing proper-
ties of graphs when compared to the start-over algorithms (3] that do not assume

existence of the previous solution.

We can characterize incremental algorithms in terms of stages. The first stage is to
determine what part of the solution is unaffected by the graph change. This is impor-
tant as substantial gains can be made by avoiding the recomputation of the unaflected
part of the solution. The second stage is the actual recomputation of that part of the
solution which is affected by the graph change. This stage can be implemented
efliciently by using the previous solution and possibly some auxiliary information that is
generated during the initial computation of the solution. This in turn leads us to a third
stage which consists of updating the auxiliary information. The complexity of an incre-
mental algorithm depends on the complexity of these three stages and our objective is to

design incremental algorithms that are eflicient when compared to start-over algorithms.

-t .

A
P
2
E
rl
p
-
]
.
)
p
l‘ K
-
p .
"
1]
4
b
3
s
Iy
¥
'l
-I
,-
b,
'l
t’.
.I
3
I. .

vy

YI¥
z

(e 8
I4
’ .l“
‘e

.
S

“ e
{'f '."J'f-(

-,r"v'
Vel

-
o
)

4

R
‘c}‘\‘:'l.":"
- ’:." [

LY

e
L] l'a
Y,

AN B -4 A

PR
b’

e e Rk L AR T A N LNy Pea f a0 8 THA Teid et e R T T, I L T I L T T R X

Pawagi and Ramakrishnan were the first to treat the problem of incremental com-
putations in graph theory in the context of synchronous parallel computation. They
have described efficient algorithms for updating minimum spanning trees [11], connected
components and bridges [13], and the distance matrix and shortest paths [12] of an
undirected graph on an unbounded model of a parallel random access machine (PRAM).
In this model of computation all processors have access to a global memory and proces-

sors can simultanecusly read from the same location but no two processors can simul-

taneously write into the same location. We refer to this model as R-PRAM. Parallel algo-
rithms for several graph problems have been devised on this particular model of compu-
tation [4, 7, 15, 18]. The algorithms developed on this model provide us with a basis for
comparing the complexity of our incremental algorithms. In this paper we describe incre-

mental algorithms for updating the transitive closure, the dominator tree and a topologi-

cal ordering of a DAG on an R-PRAM. We consider the above mentioned minor changes

AN
s e
LML

except for a change in the weight of an edge. Our algorithms for updating these proper-

'

ties require O(log n)** time and therefore are efficient when compared to the start-over

b

algorithms for initial computation of these properties that require O(log®n) time.

A A powerful variation of a PRAM is a model that has a concurrent write feature. We

refer to this model as W-PRAM in which more than one processor can simultaneously

write different values into the same memory location and only one processor succeeds

but we do not know which. Start-over algorithms for initial computation of the above

mentioned properties require O(log n) time and use O(n*) processors on this model [10].
An important feature of our algorithms for updating the transitive closure and topologi-
cal ordering is their versatility, that is, they can be adapted to run on a W-PRAM using

O(n') processors. Our incremental algorithms require O(1) time on a W-PRAM write

++Throughout this paper, we use log n to denote [foggn]

g

G
e

*
e

<

"

-
o
13

XY,

T

medel and are thus efficient when compared to start-over algorithms.

‘Fl
~

¢

The rest of the paper is organized as follows. In Section 2 we describe some graph

=
f’v
LN

theoretic preliminaries. In Section 3 we describe our algorithms for updating the transi-

A

R,

tive closure. In Section 4 we present our new start-over algorithm for computing the

7
»

dominator tree. The incremental algorithm for updating the dominator tree is also A
described in this section. In Section 5 we extend the ideas to incremental computation ot
of a topological ordering. Concluding remarks appear in Section 6 where we discuss the

adaptability of our incremental algorithms.

2. Preliminaries

In order to describe our algorithms for updating properties of a DAG we now define ‘.§\‘;-,

3% AN

_‘s"\

some graph theoretic terms and explain our notation for them. "L..

LYY

Let G=(V,E) denote a graph where V is a finite set of vertices (nodes) and E is a ot

. . . . R

set of pairs of vertices called edges. If the edges are unordered pairs then G is R

-\',{' '.

undirected else it is directed. Throughout this paper we assume that V consists of the)
« LN

set of vertices {1,2,...,n} and |E|=m. We denote the undirected edge from u to v by

(u,v) and the directed edge joining them by <u,v>. An adjacency matrix A of G is an

nXn Boolean matrix such that A{u,v]=1 if and only if (u,v) is in E. A path in G joining
two vertices iy and i, is defined as a sequence of vertices (ig,iy,ia...,i5) such that all of
them are distinct and for each 0 < p < Kk, (ip,ip+1) is an edge of G. If ip = i, then the
path is called a cycle. We denote an undirected path from vertex u to vertex v by [u-v]
and a directed path by [u—v]. We say that an undirected graph G is connected if for
every pair of vertices u and v in V, there is a path in G joining u and v. Each connected
maximal subgraph of G is called a component of G. A tree is a connected undirected

graph with no cycles in it. A rooted directed tree has a distinguished vertex called the

l.' .\ I.
EACAE

.
LW Y]

GANITAWE D

-
IR ANAAASIAE

oo P A AR)

o e A m o 8 s s e N T L P 8 i Ay g e U AN

root, from which every other vertex is reachable via a directed path. We say that vertex
u is an ancestor of vertex v if u is on the path from the root to v. A descendant of a
vertex is defined similarly. The lowest common ancestor (LCA) of vertices x and y in T is
the vertex z such that z is a common ancestor of x and y, and any other common ances-

tor of x and y in T is also an ancestor of z in T.

3. Transitive Closure

It has been shown in [18] that several graph properties of an undirected graph can
be computed by first constructing a spanning subtree for the graph. Consequently,
update algorithms for these properties involve updating a spanning tree for the new
graph (see [11, 13]). Similarly, start-over algorithms for initial computation of properties
of a DAG require its transitive closure to be computed. Therefore the update of the tran-
sitive closure of a DAG is an important step in incremental algorithms for updating pro-
perties of a DAG. In this section we describe our algorithms for updating the transitive
closure of a DAG after an edge has been inserted or deleted from it or a vertex has been

inserted into it.

Definition: The transitive closure of a directed graph G is an nXn boolean matrix A*

such that A*[i,j] = 1, iff there is a directed path from i to j, otherwise A*[i,j] is O.
Note that for an acyclic graph, A*li,i] must be 0, for all i.

The problem of updating the transitive closure involves recomputing A® for the
modified graph. Our algorithms for updating the transitive closure on an R-PRAM require
O(log n) time and use O(n®) processors. The start-over algorithm for initial computation
of A" requires O(log®n) time and uses O(n®) processors '7]. Our algorithms therefore are

¢

efficient when compared to the start-over algorithin. To design eflicient parallel

[4
»

A

L)
"f .

2y %

o .
LS MRS S

A
NS
1

v

v
v

v

1
4,

A
[N M
)

.
’,
’
v

v A

T

™~
-~
“
"
o~
~
o
K3
o

IS
-

o

>

g

-

.
:.
A
-
-
-
.

-

oy

Ay 2

I}
el

AN,
LR R A

“Te T e
Rty s
B ats

o

T PP P
B RN

algorithms for updating the transitive closure we proceed as follows.

Instead of computing the boolean matrix A®, we compute the lengths of the shor-
test paths for all vertex pairs and store them in A®. This computation assumes that
edges have unit weights. Now A*[,j] is the length of the directed shortest path from i to
J. We refer to the length of a shortest path [i — j] as the distance from i to j. The first
step in recomputing A* is to determine the vertex pairs whose distances are unaffected
by the graph change. In particular, we need to compute these pairs after an edge has
been deleted from G. The other cases of edge and vertex insertion are easy to handle.
We do not consider the problem of vertex deletion, because we are unable to determine

the vertex pairs whose distances remain unchanged after vertex deletion.

In order to describe the actual computational steps of our algorithms and the proof
of their correctness, we first describe the parallel start-over algorithm for computation of

the transitive closure.

Start-Over Algorithm

It ha: been observed in [4] that distances for all pairs of vertices in a graph
(directed or undirected) can be computed in O(log’n) time on a R-PRAM by straightfor-
ward parallelization of the known sequential algorithm that is based on repeated multi-
plication of the adjacency matrix. In this parallel algorithm addition and minimization
operations replace the multiplication and addition operations of an inner product step
involved in ordinary matrix multiplication. We refer to this as the plus-min multiplica-
tion of two matrices. The algorithm initializes the transitive closure A* to the adjacency
matrix A and then performs log n iterations of the plus-min multiplication of A® by

itself. The matrix DD is used as temporary storage for clarity.

o e
et e

- PR . o P P T TSR P
R I LT N e T L
wt,

PRI e T ‘d‘
I R e N P T N S, WL eT e, ot T e, e . -
D . PRI, SR K TORAEA .

o » - -~ '-‘..'-'... .
- . . - - - . . . - .
ahcletictivtelutuiiiletaintil SISOt

2 Mpd fy S Sl Al ey i tp iy S ap i by B Mg S St SLDIMA NG T S Ay - s SRENI IR AN AL R Sy <3 el RARE iy b X By i By e L V.4 AT a A RA SR S AN DB R I T L TN

A
. ’

. oI
i A

: 6 TN
:. ..',:.','_
:: // All steps involving i and j are executed for all i, j 1 <i<n and 1<j<n // f:‘:::-:
» AL
l’ 1. A'fij] = Ali,j] //Initialize// :

b 2. for t:==1 to log(n-1) do . RO
- 2a. DD{i,j] := min { A*[i,j], A*[i,k] + A°[k,j] } // 1<k<n ik j5£k// t::":
: 2b. A’[i,j] :== DDJij] RN
. N
' Algorithm 3.1

Lemma 3.1: The above algorithm computes the transitive closure A* in O(log®n) time

using O(n®) processors.

Proof: Steps (1) and (2b) can be done in constant time using n® processors. Step (2a)

« a
2 A

can be done in O(log n) time by assigning n processors to compute each element of the
E matrix DD. Since DD has n® elements we need O(n®) processors to perform step (2a).
N Note that at the end of t'! iteration we would have found distances for those pairs

whose vertices are at most 2" units apart. Since the maximum distance for any pair of

vertices is at most n-1 units, we need log(n-1) iterations of step (2a).

We denote the processor complexity of Algorithm 3.1 by P,(n). It can be easily

LR ’,-.' DN
et e e e e et T
-
b

improved to O(n%/log n) using a technique described in [8]. If Chandra’s {2] algorithm
for matrix multiplication is used in step (2a) then the procesior complexity reduces to

O(n*#/log n). We now proceed to describe our update algorithms and to prove their

correctness.

Edge deletion

The problem of edge deletion update is concerned with recomputing the transitive ’tj.’v"

closure A* after an edge has been deleted from the graph. In order to recompute A, we

AT T

first identify the pairs of vertices whose distances are unaffected by the edge deletion

step. We then construct matrix A, (u stands for unaffected) such that

GIPPE N Y

a7

~ L.

LR

i U

L4

i

e aTa 4w
PSR A i M

N

AT e 7Y

. { A*[i,j], if A*[1,j] is unchanged. RN
AL = 1 oo otherwise k

Now, two iterations of steps (2a) and (2b) of Algorithm 3.1 on A, recompute the X
transitive closure for the new graph. We will show later on that two iterations are e

sufficient for recomputing A*.

Let <x,y> be the deleted edge. Note that the i*" row of A* corresponds to a shor-

test path tree that is rooted at r. Deletion of an edge from G may disconnect these trees
af"»cting the distances from the root to vertices in the subtrees that are now rooted at y -
(see Fig 3.1). For i*" row we want to determine the vertices whose distances from i
might have been aflected by deletion of <x,y>. The computational steps given below
are for the i*" row, but are executed for all rows in parallel. Let d; denote the distance

to vertex j from the root i.

1. Ifd; = d, + A’ly,j], then deletion of <x,y> may affect d;. Therefore for all such e
j. set AJlijl = oo. All other entries in the i'" row are not affected. As there are

O(1) entries to check we need O(n*) processors.

2. Perform two iterations of the start-over algorithm on A to compute the updated

transitive closure matrix. This computation requires O(log n) time and uses O(n®)

L

AL

processors.

b]

We now prove the correctness of our algorithm.

Lemma 3.2: Two iterations of the start-over algorithm that operates on A, are

suflicient to compute the updated transitive closure for the new graph.

Proof: Consider the shortest path tree X corresponding to the i'" row that is rooted at i

{see Fig. 3.1). Let -~ x.y be the edge that was deleted. Deletion of <x.y >~ creates two

P TR RN L ST P fet F T T T e P
. . . . -) O T

W e et et e T e e
boo LR e alca o it taSe o

a3l
ALl

Fig. 3.1

N\

23dSNY |

wnd

1
“d

L

Distfil;«..-

~

“Acce

NTIS CRALI
DTIZ

U

Jo
By

e

for

—

Availability Codes

Special

Avail and

PTIIIATT B

o 0 v .
. 0
LI R AP

PIRRIE REMEERR 3)

. - .,
L --.v ' e

subtrees, one rooted at i and the other rooted at y. If <x,y> is an edge of G such that

all paths from i to a descendant of y, say v, in S; use <x,y>>, then after deletion of
<Xx,y>, v is not reachable from i in G. Therefore the distances from i to all such ver-
tices v are set oo in Ay, and stay oo even at the end of the second iteration of the start-

over algorithm that operates on A, .

On the other hand if <x,y> is not such an edge for v then there exists another
path from i to v that does not use the edge <<x,y>. For the purpose of analysis, assume
without loss of generality that such a path [i — v] consists of three subpaths, namely,
one from i to w, one from w to u, and one from u to v. These paths have the following
characteristics: (i) the distance from i to w is not affected by deletion of <x,y>, (ii)
either <w,u> is an edge of G, or u is equal to w, (iii) the path [u — v] uses only ver-

tices that are descendants of y in S;, and its length is not aflected by deletion of <x,y>.

It is easy to see that if there exists another path from i to v then it can be always
split into three subpaths as mentioned above. Vertex w is the last vertex from i on the
path [i — v] whose distance from i is unaffected by deletion of <x,y>. The path [w —
u} is either a single edge or possibly null and cannot possibly use <x,y>. The path u

— v uses all descendants of y and cannot use <x,y > because G is acyclic.

In fact there might be more than one such u from which v is reachable. Therefore
at the end of the first iteration (i.e., plus-min multiplication of A, by itself) we would

have found the distances to all such u’s from i.

Now consider a vertex v that does not have a neighbor in the subtree rooted at i.
The shortest path from i to v must pass through some such u (a vertex that has a neigh-
bor in the subtree rooted at i). Thercfore the distance to v from i can be expressed as

the sum of two distances. one from i to u and the other from u to v. Now. at the end of

’

v
)

X

v'e
PN

10

the second iteration we would have computed the distances to all such v’s from i. This

requires that A{u,v] must not have been marked oc in step (1) of our algorithm. In -
other words, v must be reachable from u even after the edge <x,y> has been deleted _-
S

from G. This is always true as the path [u — v} cannot use <x,y>. E_E;
It is possible that vertex v is reachable from many such u’s, but the minimization ?"_
operation will select a vertex that minimizes the length of the path from i to v. There-
fore at the end of the second iteration we would have computed the shortest paths to all '.--
b

vertices from the root i. Hence the theorem.
Theorem 3.1: Our algorithm updates the transitive closure of a directed acyclic graph
.

after an edge deletion operation in O(log n) time and uses O(n®) processors. -

Proof: The proof is immediate from steps 1 and 2 of our algorithm. n'.;-".‘

Edge and Vertex Insertion >
We now describe our algorithms for updating the transitive closure matrix after an ::'.-:'

edge or a vertex has been inserted into G. In order to compute A, from A after an e
e

edge insertion operation we proceed as follows. Let <u,v> be the edge that has been o
inserted into G. g
1. Set AJu.v] == 1. All other entries of A, arc the same as those of A™. —
2. Perform two iterations of the start-over algorithm that uses A as its input to com- :ﬁ-‘:_'
pute the updated transitive closure. '_'f-

In the case of vertex insertion we add a new row and a column to the old transitive e

closure. Let z be the new vertex that has been inserted into G Now AJ can be obtained

from A* by setting AJ'z.w! == 1, for all w. where ~Zz.w> is an edge. and Af vz = 1

(% O - RN A R W L T W CR A S R SE s e T TEPTYIYNY

11

for all y, where <y,z> is an edge. All the other entries in the z'® row and in the z**
column are oo. Again, two iterations of the start-over algorithm recompute the new tran-

sitive closure.

Theorem 3.2: Our algorithms for edge and vertex insertion update require O(log n)

time and use O(n®) processors.

Proof: For an edge insertion update we can compute A, from A* in constant time using
one processor and this step for a vertex insertion update requires 2n processors. The rest

of this proof is along lines similar to that of Theorem 3.1.

4. Dominators

In this section we describe our start-over algorithm for computing the dominator
tree of a DAG and an incremental algorithm for updating it. Computing the dominators
of a directed acyclic graph (DAG) is a very important code optimization step in compilers

(see (1] for details).

A directed graph is rooted at r if there is a path from r to every vertex in V. For
the rest of this section, without loss of generality we shall assume that G is a directed
acyclic graph rooted at r. Vertex i is a dominator of vertex j if i is on every path from r
to j. In particular, for every i in V, r and i are dominators of i. Dominators exhibit
transitivity, that is, for vertices i,j and k in V, whenever i is a dominator of j and j is a
dominator of k, then i is a dominator of k. Therefore it is easy to see that the set of
dominators of a vertex j can be linearly ordered by their order of occurrence on a shor-
test path from r to . The dominator of j closest to j (other than j) is called the immed:-
ate dominator of j. Obscrve that the immediate dominator of every vertex is unique.

We can now express the dominator relation as a directed tree D, rooted at r called the

)
..‘4 }
X '."zi

'-'
.l..‘r
-

<&
»,

-. .

3

1 5
L&

PR TR T R TR TS O - ol > 22 1 i K i Rl S DB 90 APz Vo T T SPE T LT LRI, A TSGR o L W I R AR . e i BN AT e o -)~

! 12

dominator tree. If u is the immediate dominator of v then <u,v> is an edge of D..

Now i is a dominator of j if i is an ancestor of j in D,.

.‘ .
3y For each vertex k, Savage [14] first constructs a graph Gy, by deleting from G all
> .
v~ . .\ . .
" edges leaving k. Next, the transitive closure of each of these graphs is computed in
v parallel. Let G* and Gy denote the transitive closures of G and Gy respectively. Domi- s
< . . g3
N nators are then computed by using the simple observation that if i is reachable from r in :.‘_;,-. ;
NG ...-.-..-
S ".-\..'
G* and not in Gy, then k is a dominator for i. Savage’s algorithm requires O(log?n) time Sada
o and uses O(nP,(n)) processors, where P, (n) is the processor complexity of computing RO
o 4".:,::.
- the transitive closure. R
.':_ 0.':.:‘:4
In the case of undirected graphs, the processor complexities of computing a
o minimum spanning tree, bridges, bridge-connected components, cut points, and bicon-
- nected components are same as that of computing connected components (see [18]).
Analogously, the processor requirements for computing properties of a DAG should be
. determined by the processor complexity of computing the transitive closure of a directed
graph. In the following section we will describe our algorithm for computing the domi-
nators on an R-PRAM. Our algorithm has O(log?n) time complexity and uses O(P.(n)) ol
H i
e processors. Observe that our algorithm requires fewer processors by a factor of n than \'}\:
o TaN
-::j: Savage’s algorithm, no matter what algorithm is used for computing the transitive clo- F:::::
_ sure. m
b o
- Start-over Algorithm .
- In order to compute the dominator tree we first construct a shortest path tree for L—.J
7".: G that is rooted at r. We then compute the set of dominators for each vertex in a matrix
- DOM such that DOM'i,j} = 1 if i is a dominator of j, otherwise DOM'i,j} == 0. The compu-

tational steps are as follows.

r e »
.4
o 4

A .

s v

13

o 1. Compute the transitive closure matrix A* for G. By Lemma 2.1, this computation

requires O(log’n) time and uses O(P,(n)) processors.

)

Compute the shortest path tree S, from the adjacency matrix A and the transitive

b2 D

closure matrix A®. This is done by specifying the father of each vertex. Let vertex

i be at distance d from r. A parent vertex for i is a vertex j such that the distance

to j from r is d-1 and <j,i> is an edge of G. Break the ties by selecting the

minimum such j. This step requires O(log n) time and uses O(n?) processors.

.,
-t

3. For every vertex, mark all its ancestors in S, as its dominators. That is, set DOM[,j] ®

e % 5ot
O
.

.
€.

RIS
e
A

*x

to 1 if i is an ancestor of j, else DOM(i,j] is set to 0. Ancestor computation can be

.
.
>
»."
Y

-
.
»

done in O(log n) time using O(n%) processors (see (18]). Initialization of the matrix

'.l
A

L)
.

- DOM requires constant time and O(n?) processors. .:'._::::-
.‘ :..-.'..'_-
- 4. For every vertex v, consider the non-tree edges incident on it. For all such edges _-"'3':}
. LN

. <x,v>, compute the lowest common ancestor w of x and v in S;. Select a non-tree e
- Sl
- edge <u,v> such that w, = LCA(u,v) in S,, is closest to the root r (h stands for N
T
the highest). The lowest common ancestors for all vertex pairs can be computed in N
- O(log n) time using O(n®) processors (see [18]). For each vertex v, w; and <u,v> ;.:{\-'
- SN
- '."l.‘.
.. can be determined in O(log n) time using n processors for each vertex. ALY
.- ASAY
- e
5. Now, the edge <u,v> provides a path from wy to v passing through u, other than ST

. the path present in S,. Therefore all vertices on the path [w,—v] are not domina- {1‘}1}
. IANAS
- '.‘\‘ \

tors of v. For all such vertices j, set DOM[j,v] == 0. Since the number of vertices on T

. AR
; it

any path is at most n, we need O(n®) processors to do this step in constant time.

6. For every vertex i, if j is not a dominator of i then j is not a dominator of any ver-

= s
- tex reachable from i. Set DOM[j,x} = O for all x reachable from i. This is :-3:
&N equivalent to plus-min multiplication of two matrices, DOM and A°, because A®

-

L T P I T RaBU S S L IR USRI
LRI RS S A S LA]

CCr PR et et .
AN AR NS RN A W SO O T

contains the reachability set for each vertex i. Therefore this step requires O(log n)

time and O(P,(n)) processors. -

This completes the description of our algorithm for dominators. We now provide

the proof of its correctness.

Lemma 4.1: If vertex u is not a dominator of vertex v then at the end of our algorithm

DOM|u,v] will be set to 0.

Proof: If u is not on a shortest path from r to v then DOM[u,v] is set to O in step 2 of
our algorithm and it stays O for all the following steps. If u is on a path from r to v but
it is not a dominator of v then there must exist a path from r to v that does not pass
through u. There are two cases to be considered. First, v has a non-tree edge <x,v>
incident on it such that u is on a path from LCA(x,v) to v. Among the LCAs for all non-
tree edges <x,v> incident on v, step (5) selects wy, such that it is closest to the root. In
this case, step 5 of our algorithm will set DOM{u,v] = 0, because u must lie on the
directed path from wy to v. Second, v is reachable from vertex y such that y has a non-
tree edge incident on it, providing another path to y from r, that does not use u. In step
5 of our algorithm DOM[u,y] will be set to 0, and since v is reachable from y, in the next

step, DOM{u,v] will be set to 0. Hence the Lemma.

Theorem 3.1: The above algorithm computes the dominator matrix DOM in O(logn)

time using O(P,.(n)) processors.

Proof: The correctness of our algorithm is proved in Lemma 3.1 and the processor and

time complexities are immediate from steps 1 to 6 of our algorithm.

Given the matrix DOM, and the shortest path matrix A", the dominator tree can be

easily constructed. Recall that the immediate dominator of a vertex is unique and it is

o"a"e
.

’n

LA

1S S N

i

.

AR

-

Pt

PN

i)
[

v A

‘.
[

v, v'L(. .'; [

.
0
LN

S
PRSI A

prata el

AL
i AN

)
LA A

- ,‘Ll.

JJ4 X Y DAy $AS g Pia i -g 8 L B O A TR I F N TR Y U TW RS W 5N

15

the closest dominator of that vertex. Assign n processors to each vertex and select a
dominator that is closest to it. Such a selection can be done in O(log n) time because it
involves computing a minimum of at most n elements. The root of this tree is r and the

father of each vertex except r is its immediate dominator.

This completes the description of our start-over algorithm for computation of the

dominator tree.

Updating the Dominator Tree

Observe that all steps, except the first, of our start-over algorithm for computing
the dominator tree require O(log n) time. The first steps requires Olog’n) time since it
involves computing the transitive closure for G. In Section 3 we have described our
incremental algorithms for updating the transitive closure of a DAG, after an incremental
change has been made to it. Instead of using a standard boolean matrix for transitive
closure we used the shortest path matrix to represent the reachability set for each ver-
tex. Since we are able to update the modified transitive closure matrix in O(log n) time
we can update the dominator matrix for G in O(log n) time using O(n®) processors.
Construction of dominator tree from the dominator matrix requires O(log n) time.

Therefore we have the following theorem.

Theorem 4.2: Given the transitive closure as shortest path matrix for the original DAG
G, we can update the dominator matrix and the dominator tree for G after an incremen-

tal change has been made to it in O(log n) time using O(n3) processors.

5. Topological Ordering

In this section we describe algorithm for updating a topological ordering of vertices

in a DAG. This is an important property of DAGs and finds applications in activity

o
s

S
CALd
!

W W
el
"" 0,
e
AN
LR PR

' L."_.

-,

";I.T
A gl

Ahe)
ARy
1 8
’.".

R

‘l
~.
PR,

e

..
"
2
!
LA

"o
oo
J
.

v,
IO

L S S ™ Wt Cay gty VR AR IR A A T A AR T AR U N A A A,

16

networks and in critical path analysis of networks.

Dekel et al. [4] observed that a topological ordering can be computed using the
longest paths for all vertex pairs. Kucera {10] has described a simple algorithm for topo-
logical ordering of vertices which makes use of the following definition. For different ver-
tices u and v of a DAG G, u is a predecessor of v ifl there is a directed path from u to v.
The topological ordering of the vertices has the property that if vertex i is a predecessor
of vertex j, then i precedes j in a topological ordering of the vertices of G. The steps are

given below.

1. Compute the transitive closure of the given directed acyclic graph G. This compu-

tation requires O(log®n) time and uses O(n®) processors.

[&)

For every vertex j, determine the cardinality C; of the set of vertices from which j
is reachable. This can be done in O(log n) time by assigning n processors to each

vertex as it involves computing a sum of n elements.

3. To obtain the topological ordering sort the vertices using C; as a key.

Lemma 5.1: The above algorithm computes a topological order of the vertices.

Proof: By the definition of topological order, if vertex i is a predecessor of vertex j then
i occurs before j in the ordering. Now C; is less than C; because all predecessors of i are
also predccessors of j. Therefore when all vertices are sorted on C,, 1<k<n, | must
occur before j in the topological ordering.

The time and processor complexities of our algorithm are O(log®n) and O(P(n))

respectively.

A AT N T T

DIVCRICIL I R N
‘\.'.\- 1\-\

— e N

e
AN

&L

’
4
LA

.
LS \l.‘ !

oof i o

Updating a Topological Ordering

: It easy to see that we can update topological ordering if we can update the transi-
3 tive closure of a DAG in O(log n) time. By Theorem 3.1, the transitive closure of a DAG

can be updated in O(log n) time using O(n®) processors, and the sorting step needs O(log
n) time. Therefore we can update a topological ordering in O(log n) time. In order to
come up with incremental algorithms that work for all variations of PRAM we have to

avoid the sorting step during updating of a topological ordering, because the sorting step

cannot be done in O(1) time on a W-PRAM.

- We now proceed to describe the incremental algorithms for updating a topological

ordering that can be adapted to run on a W-PRAM. Assume that the topological ordering

: is stored in an array T, such that T (i) give the numerical ordering of i.

Among the three graph changes considered in this paper, deletion of an edge from
G does not affect a topological ordering. Deletion of a vertex requires reducing the rank

of the subsequent vertices in T, by 1. This can be done in constant time using n proces-

sors. Finally, as observed by Cheston [3], addition of a vertex is equivalent to adding an
edge. Therefore we concentrate on edge insertion update. The steps involved are as fol-

- lows. Let <u,v> be the edge that has been added to G.

1. If Ty(u) € Ty(v) then the previous ordering requires no update, else proceed with

step 2.

)

Since Ty(u) > Ty(v) it is sufficient to move v and those of its successors that
appear in the topological order before u to positions after u.

- - This step is done using a known algorithm for merging two sorted lists, both of
size n [16]. Next, create a new list of vertices that consists of v and its successors

that appear in the topological ordering before u. The order of the vertices is the

o
Joet
‘e

oy
LY

LA

(el Ty Y x D™ V1 ¢ R s R T o P8 o X BQT Bel igC el gt GG a N Ky ‘W'Y Ut N B W o y ol . -

o b,

N i

" 0

P)

s FATS
s 18 %
A Iy A
- ’I~
'\'.;: same as before. The vertices that are now in the new list are removed from the old B Zr
- one. Now increment the rank of each vertex in the new list by n and that of all

Y : L
- vertices after u in the old list by 2n. We now have two sorted lists of size at most :i‘- .
Ly .t
\"'. ‘.{:.
v n. These lists are then merged using a known algorithm. This can be done in con- Loba

y 3

stant time using O(n!"®) processors [16]. The new rank of each vertex is its position

,

A

AT
»

in the array containing the merged list.

L 4
LA
. 20

s
s
.

Now consider the insertion of a new vertex w that has several incident edges. Let v

be the topologically first node that has an edge <<w,v> incident on it. Then the ranks -

v v,

s
v

.
B
.

-
v

&

of all vertices that precede v are unchanged. Insert w in the list just before v. Now we

)
4,

o

have n+1 vertices in the list. Therefore we need to increment by 1 the rankings of v and '

..:: all vertices that appear after v in the old order. Let u be the topologically last node

;“ that has an edge <u,w> incident on w. Therefore we need to move w and its succes- i
i sors in the new graph G, to positions immediately following u. This is equivalent to an .]
- A
Et.' insertion of edge <<u,w> and can be done in constant time using the edge insertion ;::E
;ﬂ- algorithm. The above discussion is summarized in the following lemma. ;EZ;

Lemma 5.2: A topological ordering of a DAG can be updated in O(log n) time using

O(n®) processors.

Proof: All steps except updating of the transitive closure can be done in constant time

and with O(n'®) processors. Therefore the time and processor complexities are deter-

mined by the first step which involves updating of the transitive closure. By Theorem

3.1. this can be done in O(log n) time using O(n®) processors. Hence the theorem. AN

'-,»_- e T T T e et L T T e W SR TR . - e e PR R I
TR B e A T T e T T e T e e e

L e e et e
AR NI NI NI A e RN P

ALUWE, T

ey R vt

19

8. Conclusions

In this paper we have presented a set of algorithms to update properties of directed
acyclic graphs such as transitive closure, dominators and topological ordering on an R-
PRAM. The central idea was to update the transitive closure of a DAG that has been

modified to store the lengths of the shortest paths for all vertex pairs.

An important feature of our algorithms (except the incremental algorithm for domi-
nators) is their versatility, that is, they can be run on a W-PRAM with little or no
modification. Observe that the inner loop of the start-over algorithm for computing the
transitive closure requires O(log n) time as it involves computing a minimum of n ele-
ments. This computation can be done in constant time on a W-PRAM [16]. This provides
us with an O(log n) time start-over algorithm for computing the transitive closure and
an O(1) iime algorithm for updating it. In the case of dominators we face a problem
with computing ancestor information in constant time. Consequently, updating domina-
tors (which involves updating ancestral information) in O(1) times appears difficult. Our
incremental algorithm for updating a topological order uses a known [16] algorithm that
merges two sorted list in O(1) time on an R-PRAM. Obviously this algorithm would also
require constant time on a W-PRAM. Our incremental algorithms can therefore be
adapted to run on a W-PRAM in O(1) time. These are faster by a factor of O(log n) over

the star-over algorithms on these two PRAM models.

References

1 A. V. Aho and J. D. Ullman, “Principles of Compiler Design”, Addison-Wesley.

Reading, Mass., 1977.

LA
-

r

-
-

v
0o A
Loy
ey

O T W B

3
Qe

‘ W
RS

- r
]
'
»

'l
)
el

A
Y.y
I&.""

il

e.rr.e.
’l
. .
‘e

rLLL,

»

%

- 20

[2i A. K. Chandra, “Maximal Parallelism in Matrix Multiplication”, RC 6193, IBM
l Rept., 1975.

[3] G. Cheston, “Incremental Algorithms in Graph Theory”, TR 91, Dept. of

(4]

i 5]

=

10
8 1]
r
<

12

PR LY D OIS L LN Rt I I

S
AN,

e et el et et . . ",
: S S R L Sl S A L . S LSRR
DAL S R SR 8. PLAUNL YT, AR M AT A AR FSORE P P TP A L“'l— e i 2

Computer Science, Univ. of Toronto, 1976.

E. D. Dekel, D. Nassimi and S. Sahni, “Parallel Matrix and Graph Algorithms”,

SIAM J. Comp. 10 (1981), pp. 657-675.

S. Even and Y. Shiloach, “An On-line Edge Deletion Problem”, JACM 28 (1982),
pp. 1-4.

S. Fujishige, “A Note on the Problem of Updating shortest Paths”, Networks 11

(1981), pp. 317-319.

D. Hirschberg, “Parallel Algorithms for the Transitive Closure and the Connected

Component Problem”, Proc. Eighth STOC, 1976, pp. 55-57.

D. Hirschberg, A. K. Chandra and D. V. Sarwate, “Computing Connected

Components on Parallel Computers”, CACM 22 (1979), pp. 461-464.

T. Ibaraki and N. Katoh, “On-line Computation of Transitive Closure of

Graphs”, Inf. Proc. Letters 16 (1983), pp. 95-97.

L. Kucera, “Parallel Computation and Conflicts in Memory Access”, Inf Proc.

Letters 14 (1982}, pp. 93-96.

S. Pawagi and . V. Ramakrishnan, “An O(log n) Algorithm for Parallel Update
of Minimum Spanning Trees’”, TR 1452, Dept. of Computer Science, Univ. of

Maryland, 1984. Also to appear in Information Processing Letters.

S. Pawagi and 1. V. Ramakrishnan, “On Using Multiple Inverted Trees for

Parallel Updating of Graph Properties”, TR 1502, Dept. of Computer Science.

......................................
................
.............

A
'-' A
e ol

- yTal
A A

>
v
N 5..,

- v

[}
)
-

A -
o
-
il

.
Yo
I
h

%

13]

[15]

[16]

[17]

[18]

AU AR AL LN I Ry S u ity piy peg S Y - P A 3> b PXR] DR

21

Univ. of Maryland, 1985. Also to appear in Proc. Allerton Conference.

S. Pawagi and I. V. Ramakrishnan, “Parallel Update of Graph Properties in
Logarithmic Time”, Fourteenth International Conference on Parallel Processing,

1985, pp. 186-193.

C. Savage, ‘“Parallel Algorithms for Some Graph Problems’, TR 784, Dept. of
Mathematics, Univ. of Illinois, Urbana, 1977.
C. Savage and J. Ja'Ja’, “Fast Efficient Parallel Algorithms for Some Graph

Problems”, SIAM J. Comp. 10 (1981), pp. 682-691.

Y. Shiloach and U. Vishkin, “Finding the Maximum, Merging and Sorting in a

Parallel Computation Model”, J. Algorithms 2 (1981), pp. 88-102.

P. Spira and A. Pan, “On Finding and Updating Spanning Trees and Shortest

Paths”, SIAM J. Comp. 4 (1975), pp. 375-380.

Y. Tsin and F. Chin, “Efficient Parallel Algorithms for a Class of Graph-

Theoretic Problems”, SIAM J. Comp. 14 (1984), pp. 580-599.

e W T T e e P et e T

SRS ST T ... T

.

LN NS

TN

AT S Te e T e ey

L]

P i AT e A w SN A3 3 2'a4 Eigda s p A » Rk Bl Rt - Tk

Unclassirfied
SECUR'TY CLASSIFICATION OF T34'8 24 GE M ' ’

r- REPORT DOCUMENTATION PACE

4

e REPORT SECURITY CLASSIFICATION 10. RESTRICTIVE MARAKINGS
Unclassified N/B
7s SECURITY CLASSIFICATION AUTHCRITY 3. DISTRIBUTION. AVAILABILITY OF REPORT
N/A Approved for public release;
b OECLASSIFICATION,DOWNGRADING SCHEDULE distribution unlimited
N/A
4 PEAFOAMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORY NUMBER 3,
CAR-TR-148 NKRFOQSR " IR S A R
C8-TR=-1551
68 NAME OF PERFORMING ORGANIZATION 6. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
. Rk (I applicable) . . : s e
University of Maryland N/ﬂ Alr Force Office of Scientific
Research
B AN €TI0 Tee g ZIP Codel 7b. SDDRESS (City Srate and 71P Cone:
Center for Automation Research Bolling Air Force Base
College Park, MD 20742 Washington, D.C. 20332
33 NAMVE OF FUNDING SPONSORING B8o. OFFICE SYMBC L 8 PROCUREMENT INSTAUMENT IDENT . F'CATION AUMBER
.] licadle
MNIZATION (11 applicable! F49620-83-C-0082
8c ADORESS (City. State and ZIP Code/ 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO
GWwoaF 2304 A1
11 TiTLE (include Security Claumcouon:Updatlng Propertigs
of Directed Acvclic Graphs on a Parallgl Random Adcess MacRhine
12 PFRSONAL AuTHORS] Shaunak Pawagi, I.V. Ramakrishnan
e 130, [IME COVERED [/A 14 DATE OF REPORT 1¥r, Mo, Day, . |13 PAGE - vt
Technica fROM Yo 1985-September 22
RN T 2y ITATION
17 COSAT!I CODES 18. SUBJECT TERMS rContinue on reverse if necessary ond identify by dlock number:

FIELD GROUP sus GR

1% ABSTRACT (Continue on reverse (f necessary and identify by block number;

Fast parallel algorithms are presented for updating the transitive closure,
the dominator tree, and a topological ordering of a directed acyclic graph
(DAG) when an incremental change has been made to it. The kinds of changes
that are considered here inrclude insertion of a vertex or insertion and
deletion of an edge. The machine model used is a parallel random ac~ess
machine which allows simultaneous reads but prohibits simultaneous writes
into the same memory location. The algorithms describea in this paper
require O(log n) time and use 0(n3) processors. These algorithms are
efficient when compared to previously known O(log?n) time algorithms for
initial computation of the above mentioned properties of DAGS. We alsc
describe a new algorithm for initial computaticn of the dominator tree cf a
DAG. Our algorithm improves the processor complexity of a previously known
algorithm [14] by a factor of n, but does not affect the time complexiytv
which remains Q(logZn).

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
- Unclassified
UNCLASSIFIED/UNLIMITED & SAME AS APT. (J OTiC useas [
22s MAMT JOF RESPONSIBLE INDIVIOUAL 22D TELEPHONE NUMSBER 22¢ OFF " SYMBCL
\ (Inctude Areg Code:
Dr Ko Padnad (30} 761- H34o m
DD FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OBSOLETE Unclassified

SECURITY CLASSIFICATICN CF TH.5 PAGE

